CRISPR: Gene editing and beyond

CRISPR: Gene editing and beyond



the crisper cast 9 system is a tool for cutting DNA at a specifically targeted location the technique has already revolutionized gene editing but scientists are always looking for new possibilities so what else can CRISPR do since being discovered in a bacterial immune system CRISPR Castine has been adapted into a powerful tool for genomic research there are two components to the system a DNA cutting protein called Cass 9 and an RNA molecule known as the guide RNA bound together they form a complex that can identify and cut specific sections of DNA first cass 9 has to locate and bind to a common sequence in the genome called a perm once the pam is bound the guide RNA unwinds part of the double helix the RNA strand is designed to match and bind a particular sequence in the DNA once it's found the correct sequence Castine can cut the DNA it's to nuclear's domains each make a neck leading to a double strand break although the cell will try to repair this break the fixing process is error-prone and often inadvertently introduces mutations that disable the gene this makes CRISPR a great tool for knocking out specific genes but making double strand breaks is an all CRISPR can do some researchers are deactivating one or both of cass nines cutting domains and fusing new enzymes onto the protein cast line can then be used to transport those enzymes to a specific DNA sequence in one example cast nine is fused to an enzyme a deaminase which mutates specific DNA bases eventually replacing site adine with fiber dean this kind of precise gene editing means you could turn a disease-causing mutation into a healthy version of the gene or introduce a stop codon at a specific place but it's not all about gene editing several labs have been working on ways to use CRISPR to promote gene transcription they do this by deactivating cast line completely so it can no longer cut DNA instead transcriptional activators are added to the cast 9 by either fusing them directly or via a string of peptides alternatively the activators can be recruited to the guide RNA instead these activators recruit the cell's transcription machinery bringing RNA polymerase and other factors to the target and increasing transcription of that gene the same principle applies to gene silencing a crab domain fused to the casts 9in activates transcription by recruiting more factors that physically block the gene a more outside-the-box idea for using CRISPR is to attach fluorescent proteins to the complex so you can see where particular DNA sequences are found in the cell this could be useful for things like visualizing the 3d architecture of the genome or to paint an entire chromosome and follow its position in the nucleus CRISPR has already changed the face of research but these new ideas show that what's been achieved so far could just be the tip of the iceberg when it comes to crispers potential whatever comes next it seems the CRISPR revolution is far from over you

Posts created 34089

33 thoughts on “CRISPR: Gene editing and beyond

  1. Advanced medicine & education, new energies & materials, IoT & big data processing……the next generation techs will be centered on AI.

    They will remove the barrier between artifacts & natural objects, being friendly to natural ( including body-internal ) & social environments.

    I hope we can achieve the sustainability of civilization by new, epoch-making technologies & wise, humanistic policies 💖.

    https://ameblo.jp/lovelucifer/entry-12272343398.html / https://ameblo.jp/lovelucifer/entry-12429842470.html

  2. WARNING: Law of Unexpected Consequences = enthusiastic naive scientists who only care about their personal careers & never think about the consequences that, being biological can explode across the planet irreversibility.

  3. Layman's question. I was born with a genetic flaw that has caused me problems now that I am almost 50 years old. Can CRISPR tech help me?

  4. Hey Nature. where can I find some more info about the use of CRISPR-GFP chimeras for spatial detection of speecific sequences?

  5. This has unimaginable potential. Hope to have some benefit from this tech before i pass away.

  6. Amazing! Do you think by disabling the genes and introducing certain mutations could help the production of amyloid protein build up in the brain creating those amyloid plaques?

    Once amyloid-beta reaches the tipping point it kills the Neuron which becomes shrivelled up into a neurofibrillary tangle n Alzheimers patients right?

    My questions are:

    – How does introducing a new enzyme to a protein get to dictate where it goes in the specific genetic sequence?
    – How are they able to add a stop codon to certain parts of RNA?

    I love the idea of florescent proteins though, is it possible to be able to map certain genetic traits if we follow it clearly enough!!

  7. How can we be able to do these things and people still not understand what science is or even that it is a good thing….

  8. What year they going to start using crisper cast nine to help people get rid of cancer HIV leukemia all timers can you give me a year Larry price at Larry price 1961 gmail.com I'll be waiting for your answer thank you very much bless you

  9. How does this gene editing method affects off springs ? Can there be any potential negative side effects like unwanted mutations ?

  10. I've not seen yet even one supposed 'explanation' of how CRISPR works …that really works. All are jumbled, vague 'pretty-pictured' overviews that, apart from emphasizing how 'cool' all this is along with some muddled metaphors and graphics, fail entirely in their stated task. Please, someone with some real educative credentials and flair, please give this a shot.

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top